

Group profile

Czech company, founded in 1991
Since 1997, the company has been manufacturing turbines of its own design.

We have manufactured and commissioned approximately 100 turbines worldwide.

Group profile

First EPC project NILE SUGAR, Egypt in 2008.

Was established Boiler division in 2009

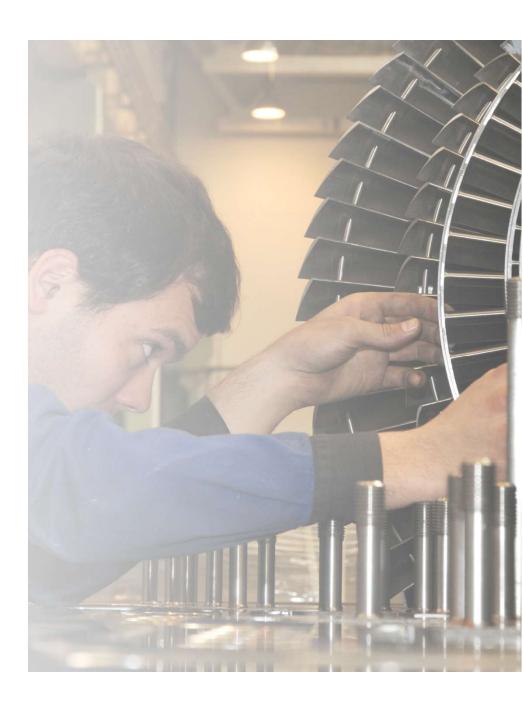
So far, 66 boilers have been manufactured and commissioning.

2019 We became part of the ShaanGu Group

In 2021, the company celebrated 30 years in the market.

The company's annual turnover last year was € 42 373.

Group profile

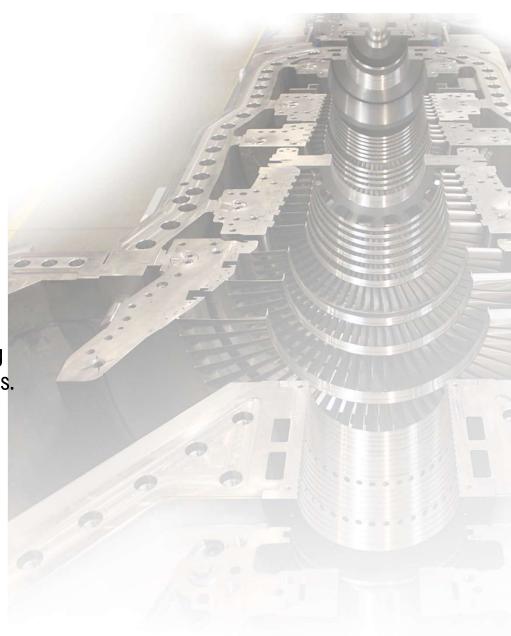

The company currently employs approximately 300 employees. These include a highly qualified professional team:

Research & Development Division Engineering Division

Execution Division

Sales Divisoion

and many of our other experts



The advantages of our turbines

The parameters of EKOL steam turbines are optimised according to the needs of customers to give them the best possible operating results.

EKOL uses unified components, but performs design optimization for each project.

EKOL steam turbines are realized in a robust design, thus ensuring maximum operational reliability and minimising the cost of services.

Our other skills

Long-term experience in experimental wind tunnel measurements also in operating turbines.

Advanced analytical and numerical (FEM, CFD) analysis.

We have a grant program TREND (017013)

Preparation and implementation

of experimental tests in a wind tunnel

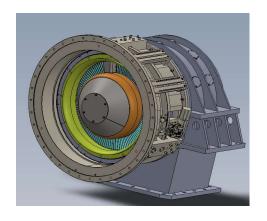


Fig. 4. Turbine test rig.

Applications

Incinerator Industrial

Power Generation

Nuclear Power Plant

Coal chemical industry

Production Plant

Petroleum Industry

Where we supply

Efficient Energy

Our main strategy is to improve overall energy efficiency and thereby transform the existing energy sector.

We aim to achieve this by pursuing mutual development with all customers and partners by introducing the concept of "mutual creatinon, mutual sharing, mutual benefit" into each stage of projects (including design, financing, construction and operation).

To create intelligent green energy for human civilization

Certificate ISO

Quality management System (QMS) in accordance with ČSN EN ISO 9001:2016

Environmental Management System (EMS) in accordance with ČSN EN ISO14001:2016

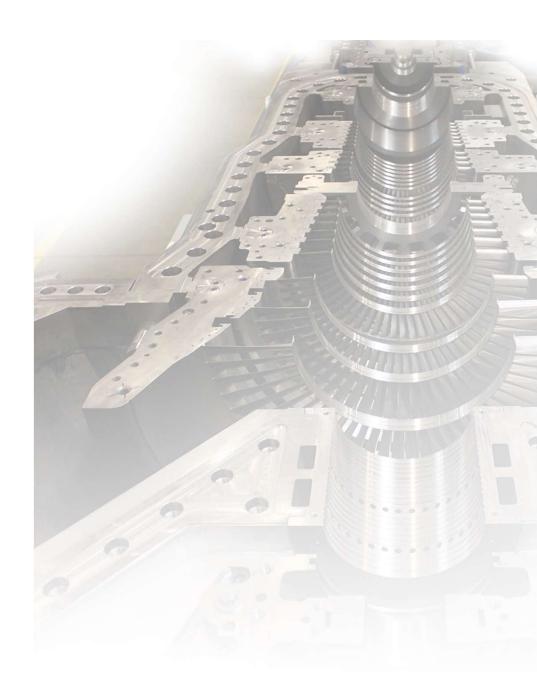
Occupational Health & Safety System (SMS) in accordance with ČSN OHSAS 45001:2018

Parameters of steam turbines

Туре	Size - marking	Max. Inlet Parame		Max. Power (MW)	Numbers of casing	Max. numbers of control. Extractions	Max. numbers of bleeds	Outlet Pressure bar (a)	Max. speed (rpm.)
	EST 10 C	45 bar;	450 °C	1,5	1	0	0	0,06-1,5	16 000
CONDENSING	EST 20 C	45 bar;	450 °C	3,5	1	1	1	0,06-1,5	16 000
	EST 30 C	68 bar;	485 °C	12	1	1	1	0,06-1,5	10 000
DEN	EST 40 C	90 bar;	535 °C	25	1	1	2	0,06-1,5	7 500
NOS	EST 50 C	110 bar;	535 °C	40	1	2	3	0,06-1,5	6 000
0	EST 60 C	135 bar;	540 °C	66	1	2	6	0,06-1,5	5 000
	EST 70 C	135 bar;	540 °C	70	2	2	6	0,06-1,5	3 000
	EST 10 B	45 bar;	450 °C	1,5	1	0	0	Max. 24	16 000
RE	EST 20 B	45 bar;	450 °C	3,5	1	1	0	Max. 24	16 000
SSURE	EST 30 B	68 bar;	485 °C	12	1	1	1	Max. 24	12 000
PRE	EST 40 B	90 bar;	535 °C	25	1	1	1	Max. 24	9 000
BACK	EST 50 B	110 bar;	535 °C	40	1	1	2	Max. 24	8 000
BA	EST 60 B	135 bar;	540 °C	66	1	2	3	Max. 24	6 000
	EST 70 B	135 bar;	540 °C	70	2	2	4	Max. 24	5 500

EKOL steam turbine references

HEATING PLANTS


 Veolia Kolín 	12	MWe
• EC Kielce	10,8	8 MWe
 TTA Tábor 	11	MWe
 Colterm Timisoara 	20	MWe
 TČB České Budějovice 	12	MWe

WASTE TO HEAT POWER PLANTS

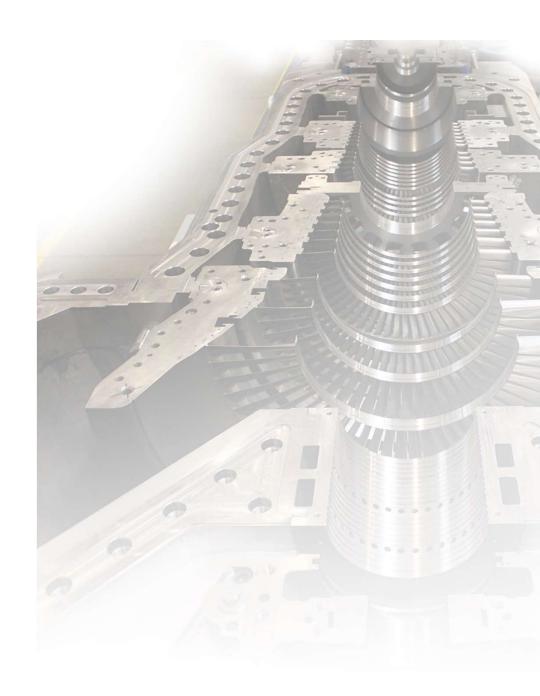
 Bielefeld 	5,6	MWe
 Białystok 	9,7	MWe
 Szczecin 	15	MWe
 Gdańsk 	17,8	MWe

BIOMASS POWER PLANTS

 Banská Bystrica 	5,5	MWe
 Domoradice 	8,4	MWe
 Energa Elbląg 	25	MWe
 Loučovice 	7,5	MWe
 Bioenergo Kolín 	6,5	MWe
 Benkovac 	6	MW
 Barlinek 	6,3	MWe
 Gospič 	6,3	MWe
Bandurka	13,6	MWe

EKOL steam turbine references

PAPER MILLS AND CHEMICAL PLANTS


 HSFC Bangkok 	40	MWe
 Synthos Dwory 	28,5	MWe
 Soda Inowrocław 	10,5	MWe
 Lovochemie Lovosice 	25	MWe
 Bukoza Hencovce 	25	MWe

SUGAR PRODUCTION

- Armant, Edfu, Qous, Kom-Ombo 6 MWe
- Nobaria 2x 8 MWe, Nile Sugar 2x 8 MWe
- Jazan Sugar 2x 7 MWe, Etihad 2x 10 MWe
- Etihad II. 2x 20MWe

MECHANICAL DRIVES

 Syzran Refinery 	3,5 MW
 Starobeshevo 	5,5 MW
 Mingshui 	2x 26 MW
 Ekibastuzskaja Gres 	2x 14 MW
 Yantai Wanhua 	9 MW
 Yuncheng 30 MW, 	Jinan 42,5 M\

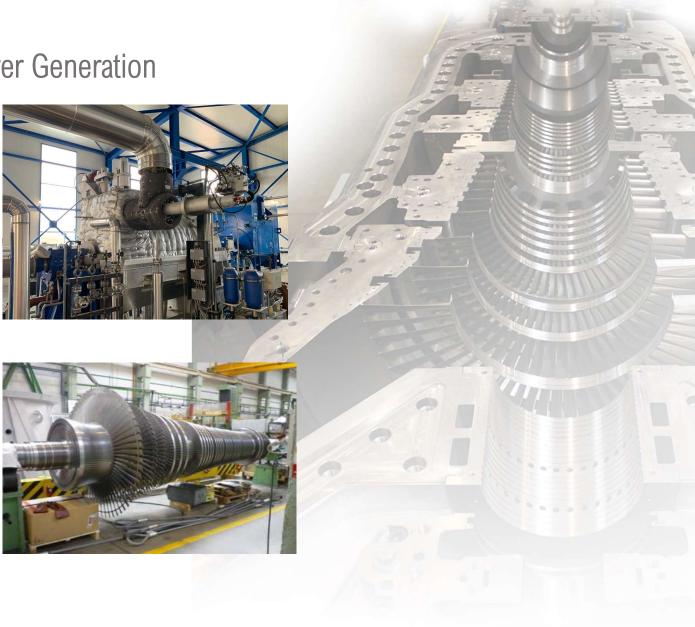
Steam turbines for Paper Mills and Chemical Plants

Bokoza Hencovce 25 MWe

Lovochemie Lovosice 25 MWe

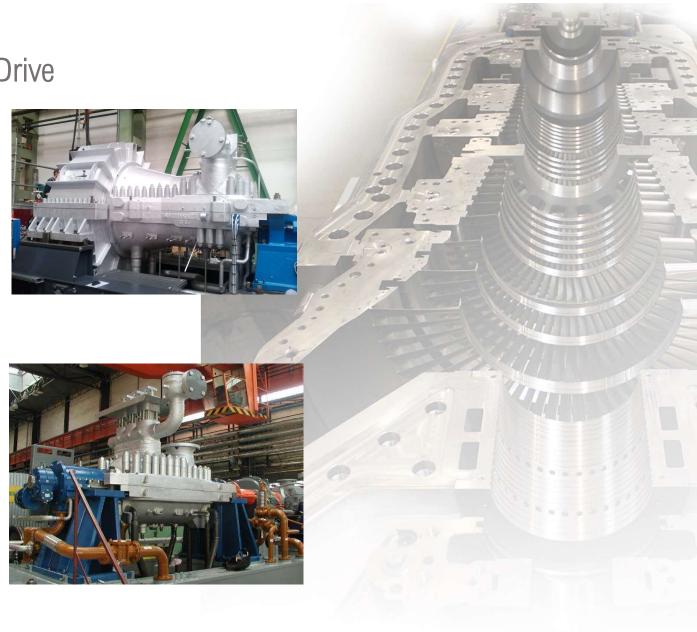
Steam turbines for Waste to Heat Power Plants

Białystok 9,7 MWe


Gdańsk 17,8 MW

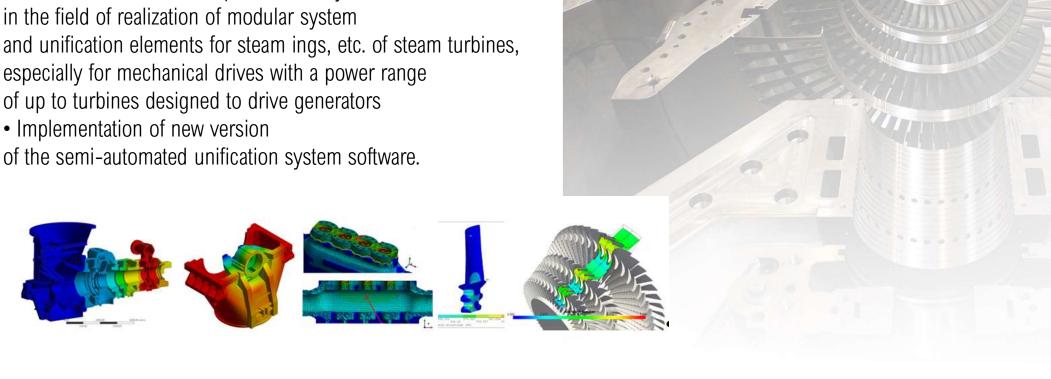
Steam turbines for Biomass Power Generation

Gospič 6,3 MWe


Energa Elbląg 25 MWe

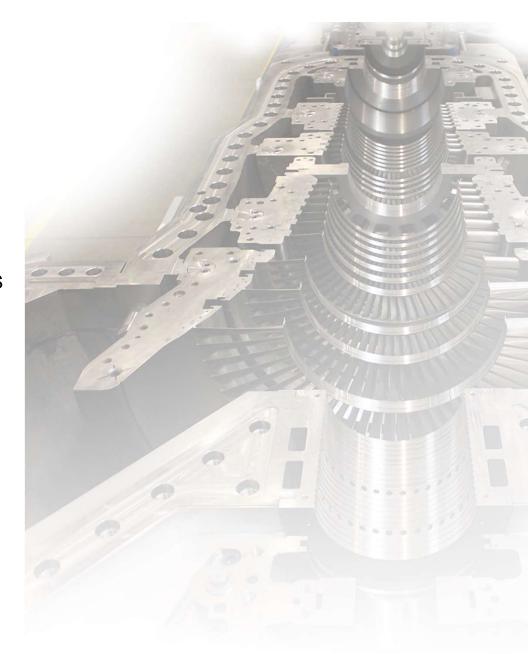
Steam turbines for Mechanical Drive

Mingshui 2 x 25 MWe

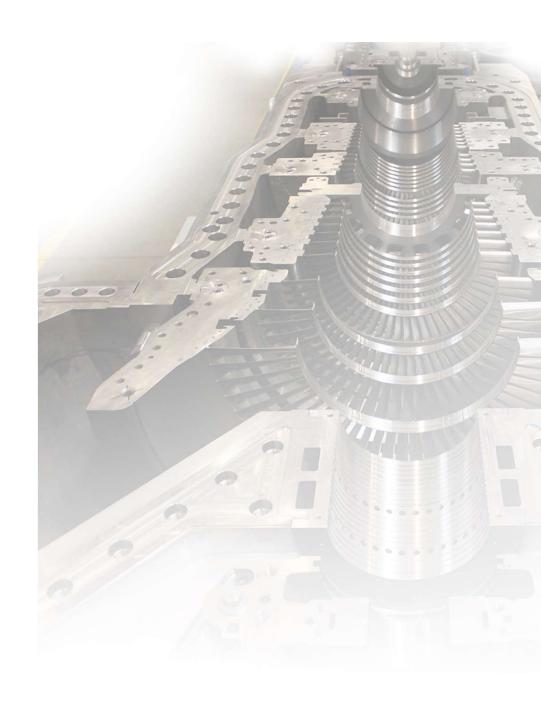

Starobeshewo 5 MWe

R & D of EKOL, experimental measurement

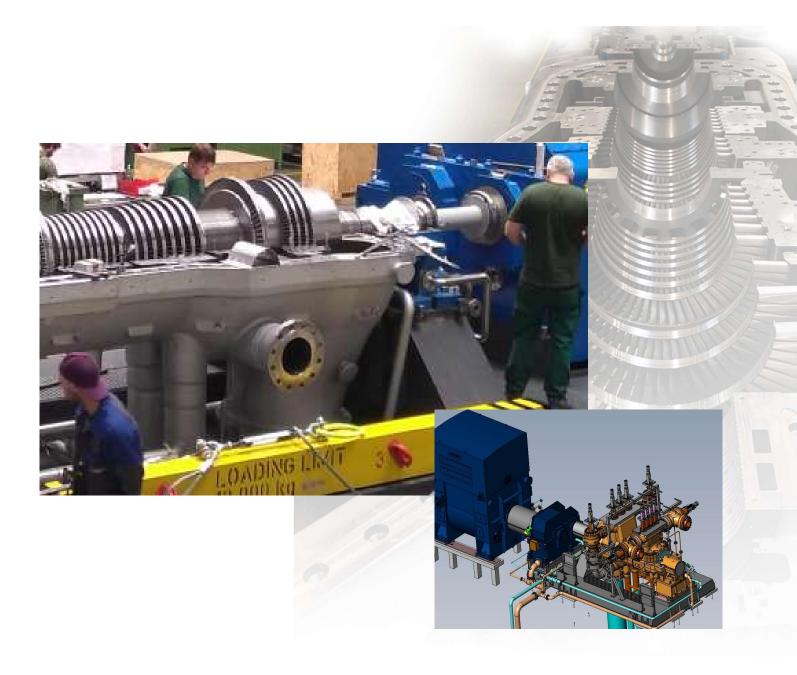
The main focus of the division's activity is now in line with tasks mentioned below, namely:


- Realization of new types of last blades
- Creation of a modular system of stator parts, governor valves, bear70MW and with overlap and usability in the field of realization of modular system and unification elements for steam ings, etc. of steam turbines, especially for mechanical drives with a power range of up to turbines designed to drive generators

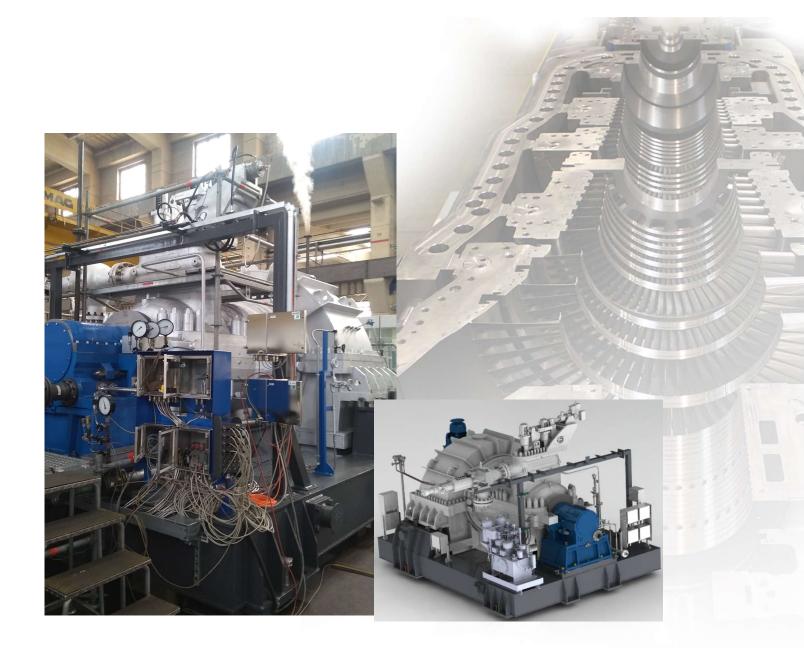
R & D of EKOL, experimental measurement


For the seamless operation of the division and productivity gains, the implementation of powerful SW tools for the following areas contributes:

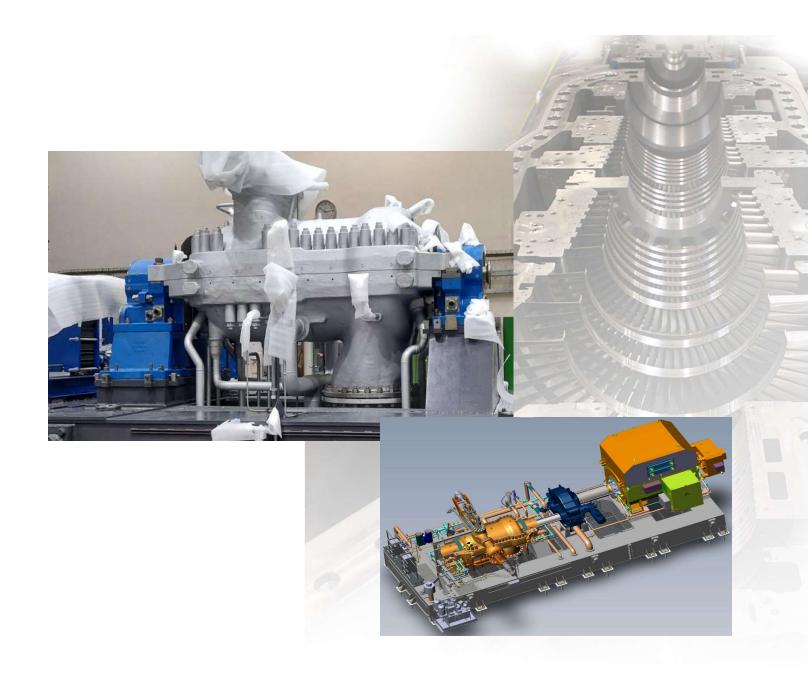
- Analytical calculations: additional modules of common **SW tools** (HT basic, Visual Basic / Excel, etc.)
- Two-dimensional design layouts and **2D documentation**: Autodesk solutions (AutoCAD mechanical, ME10)
- Creating and validating 3D data and documentation: Autodesk solutions (Navisworks, Inventor, Plant 3D, Dassault Systems (SolidWorks, SolidWorks Simulation, SolidWorks Enterprise PDM)
- Verification of designs: For the verification
 of the rotary parts of the rotary machines
 of the NREC solution(AxCent TurboOPT and TurboGrid),
 Ansys (Ansys Mechanical Enterprise, Ansys CFX, Fluent, etc.)


The latest realization 2021 -2023

300808-LOMŻA, PL	3,3 Mwe
300809-LUBLIN, PL	12 MWe
300819-JINAN, China	42,5 MW
300825-MINGSHUI2,China	28 MW
300826-GDAŃSK, PL	18 MWe
300828-SYNTHOS DWORY, PL	31,5 MWe
300829-KOSTRZYN, PL	7 MWe
300834-HUAFENG2, China	10,7 MW
300834-HUAFENG2, China 300837-ERDEMIR, Turkey	10,7 MW 20 MW
•	,
300837-ERDEMIR, Turkey	20 MW
300837-ERDEMIR, Turkey 300848-MALEIC, China	20 MW 20,6 MW


Synthos Dwory

EST 50BE 5 200 rpm 77, 6 bar/ 499°C 31,5 MWe


Erdemir

EST 40 CEE 4 500 rpm 43, 7 bar / 445°C 20 MWe

AWW Zbiersk

EST 30B 8 800 rpm 67 bar / 479 °C 9,8 MWe

Legal Address: Křenová 65,

602 00 Brno,

Czech Republic

Tel: +420 543 531 710

Fax: +420 543 242 912

Internet: www.ekolbrno.cz

Email: <u>ekolsro@ekolbrno.cz</u>

